home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_0 / 0-7-2.tut < prev    next >
Unknown  |  1996-07-25  |  9.0 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06S' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 53 23 00 00 d6 00 00 00 |TUTOR 06|S#......|
|00000010| 53 65 63 74 69 6f 6e 20 | 50 2e 37 20 20 47 72 61 |Section |P.7 Gra|
|00000020| 70 68 69 63 61 6c 20 52 | 65 70 72 65 73 65 6e 74 |phical R|epresent|
|00000030| 61 74 69 6f 6e 20 6f 66 | 20 44 61 74 61 0d 0a 00 |ation of| Data...|
|00000040| 0d 0b 00 0e 65 30 2d 37 | 2d 31 0e 47 75 69 64 65 |....e0-7|-1.Guide|
|00000050| 64 20 45 78 61 6d 70 6c | 65 20 31 0f 20 20 53 6b |d Exampl|e 1. Sk|
|00000060| 65 74 63 68 69 6e 67 20 | 61 20 50 6f 6c 79 67 6f |etching |a Polygo|
|00000070| 6e 0d 0a 00 0d 0b 00 0e | 65 30 2d 37 2d 32 0e 47 |n.......|e0-7-2.G|
|00000080| 75 69 64 65 64 20 45 78 | 61 6d 70 6c 65 20 32 0f |uided Ex|ample 2.|
|00000090| 20 20 46 69 6e 64 69 6e | 67 20 48 6f 72 69 7a 6f | Findin|g Horizo|
|000000a0| 6e 74 61 6c 20 61 6e 64 | 20 56 65 72 74 69 63 61 |ntal and| Vertica|
|000000b0| 6c 20 44 69 73 74 61 6e | 63 65 73 0d 0a 00 0d 0b |l Distan|ces.....|
|000000c0| 00 0e 65 30 2d 37 2d 33 | 0e 47 75 69 64 65 64 20 |..e0-7-3|.Guided |
|000000d0| 45 78 61 6d 70 6c 65 20 | 33 0f 20 20 55 73 69 6e |Example |3. Usin|
|000000e0| 67 20 74 68 65 20 50 79 | 74 68 61 67 6f 72 65 61 |g the Py|thagorea|
|000000f0| 6e 20 54 68 65 6f 72 65 | 6d 0d 0a 00 0d 0b 00 0e |n Theore|m.......|
|00000100| 65 30 2d 37 2d 34 0e 47 | 75 69 64 65 64 20 45 78 |e0-7-4.G|uided Ex|
|00000110| 61 6d 70 6c 65 20 34 0f | 20 20 41 6e 20 41 70 70 |ample 4.| An App|
|00000120| 6c 69 63 61 74 69 6f 6e | 20 6f 66 20 74 68 65 20 |lication| of the |
|00000130| 44 69 73 74 61 6e 63 65 | 20 46 6f 72 6d 75 6c 61 |Distance| Formula|
|00000140| 0d 0a 00 0d 0b 00 0e 65 | 30 2d 37 2d 35 0e 47 75 |.......e|0-7-5.Gu|
|00000150| 69 64 65 64 20 45 78 61 | 6d 70 6c 65 20 35 0f 20 |ided Exa|mple 5. |
|00000160| 20 41 6e 20 41 70 70 6c | 69 63 61 74 69 6f 6e 20 | An Appl|ication |
|00000170| 6f 66 20 74 68 65 20 4d | 69 64 70 6f 69 6e 74 20 |of the M|idpoint |
|00000180| 46 6f 72 6d 75 6c 61 0d | 0a 00 0d 0b 00 0e 65 30 |Formula.|......e0|
|00000190| 2d 37 2d 36 0e 47 75 69 | 64 65 64 20 45 78 61 6d |-7-6.Gui|ded Exam|
|000001a0| 70 6c 65 20 36 0f 20 20 | 46 69 6e 64 69 6e 67 20 |ple 6. |Finding |
|000001b0| 50 6f 69 6e 74 73 20 61 | 74 20 61 20 53 70 65 63 |Points a|t a Spec|
|000001c0| 69 66 69 65 64 20 44 69 | 73 74 61 6e 63 65 20 66 |ified Di|stance f|
|000001d0| 72 6f 6d 20 61 20 47 69 | 76 65 6e 20 50 6f 69 6e |rom a Gi|ven Poin|
|000001e0| 74 0d 0a 00 0d 0b 00 0e | 69 30 2d 37 2d 31 0e 49 |t.......|i0-7-1.I|
|000001f0| 6e 74 65 67 72 61 74 65 | 64 20 45 78 61 6d 70 6c |ntegrate|d Exampl|
|00000200| 65 20 31 0f 20 20 55 73 | 69 6e 67 20 74 68 65 20 |e 1. Us|ing the |
|00000210| 44 69 73 74 61 6e 63 65 | 20 46 6f 72 6d 75 6c 61 |Distance| Formula|
|00000220| 20 61 6e 64 20 4d 69 64 | 70 6f 69 6e 74 20 46 6f | and Mid|point Fo|
|00000230| 72 6d 75 6c 61 0d 0a 00 | 53 65 63 74 69 6f 6e 20 |rmula...|Section |
|00000240| 50 2e 37 20 20 47 72 61 | 70 68 69 63 61 6c 20 52 |P.7 Gra|phical R|
|00000250| 65 70 72 65 73 65 6e 74 | 61 74 69 6f 6e 20 6f 66 |epresent|ation of|
|00000260| 20 44 61 74 61 0d 0b 00 | 53 6b 65 74 63 68 20 74 | Data...|Sketch t|
|00000270| 68 65 20 74 72 69 61 6e | 67 6c 65 20 77 69 74 68 |he trian|gle with|
|00000280| 20 74 68 65 20 69 6e 64 | 69 63 61 74 65 64 20 76 | the ind|icated v|
|00000290| 65 72 74 69 63 65 73 2e | 0d 0a 00 0d 0b 00 20 20 |ertices.|...... |
|000002a0| 20 20 20 28 2d 32 2c 20 | 33 29 2c 20 20 28 32 2c | (-2, |3), (2,|
|000002b0| 20 32 29 2c 20 20 28 31 | 2c 20 2d 32 29 0d 0a 00 | 2), (1|, -2)...|
|000002c0| 0d 0a 00 13 12 31 53 4f | 4c 55 54 49 4f 4e 12 30 |.....1SO|LUTION.0|
|000002d0| 0d 0a 00 0d 0b 00 46 69 | 72 73 74 2c 20 77 65 20 |......Fi|rst, we |
|000002e0| 70 6c 6f 74 20 74 68 65 | 20 74 68 72 65 65 20 70 |plot the| three p|
|000002f0| 6f 69 6e 74 73 20 61 73 | 20 73 68 6f 77 6e 20 69 |oints as| shown i|
|00000300| 6e 0d 0a 00 74 68 65 20 | 66 69 67 75 72 65 20 61 |n...the |figure a|
|00000310| 74 20 74 68 65 20 72 69 | 67 68 74 2e 20 20 20 20 |t the ri|ght. |
|00000320| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000330| 20 20 20 20 20 14 6b 33 | 2d 31 2d 31 61 2e 6d 14 | .k3|-1-1a.m.|
|00000340| 34 38 14 31 33 14 34 30 | 14 38 14 14 76 6b 33 2d |48.13.40|.8..vk3-|
|00000350| 31 2d 31 62 2e 6d 14 34 | 38 14 31 33 14 34 30 14 |1-1b.m.4|8.13.40.|
|00000360| 38 14 14 76 6b 33 2d 31 | 2d 31 63 2e 6d 14 34 38 |8..vk3-1|-1c.m.48|
|00000370| 14 31 33 14 34 30 14 38 | 14 13 14 76 6b 33 2d 31 |.13.40.8|...vk3-1|
|00000380| 2d 31 64 2e 6d 14 34 38 | 14 31 33 14 34 30 14 38 |-1d.m.48|.13.40.8|
|00000390| 14 13 0d 0a 00 0d 0b 00 | 4e 6f 77 20 77 65 20 63 |........|Now we c|
|000003a0| 6f 6e 6e 65 63 74 20 74 | 68 65 20 70 6f 69 6e 74 |onnect t|he point|
|000003b0| 73 20 77 69 74 68 20 6c | 69 6e 65 20 73 65 67 6d |s with l|ine segm|
|000003c0| 65 6e 74 73 0d 0a 00 74 | 6f 20 66 6f 72 6d 20 74 |ents...t|o form t|
|000003d0| 68 65 20 73 69 64 65 73 | 20 6f 66 20 74 68 65 20 |he sides| of the |
|000003e0| 74 72 69 61 6e 67 6c 65 | 2e 20 20 20 20 20 20 20 |triangle|. |
|000003f0| 20 20 20 20 20 20 20 20 | 14 76 6b 33 2d 31 2d 31 | |.vk3-1-1|
|00000400| 65 2e 6d 14 34 38 14 31 | 33 14 34 30 14 38 14 14 |e.m.48.1|3.40.8..|
|00000410| 76 6b 33 2d 31 2d 31 66 | 2e 6d 14 34 38 14 31 33 |vk3-1-1f|.m.48.13|
|00000420| 14 34 30 14 38 14 14 76 | 6b 33 2d 31 2d 31 67 2e |.40.8..v|k3-1-1g.|
|00000430| 6d 14 34 38 14 31 33 14 | 34 30 14 38 14 0d 0a 00 |m.48.13.|40.8....|
|00000440| 53 65 63 74 69 6f 6e 20 | 50 2e 37 20 20 47 72 61 |Section |P.7 Gra|
|00000450| 70 68 69 63 61 6c 20 52 | 65 70 72 65 73 65 6e 74 |phical R|epresent|
|00000460| 61 74 69 6f 6e 20 6f 66 | 20 44 61 74 61 0d 0b 00 |ation of| Data...|
|00000470| 46 69 6e 64 20 74 68 65 | 20 64 69 73 74 61 6e 63 |Find the| distanc|
|00000480| 65 20 62 65 74 77 65 65 | 6e 20 74 68 65 20 67 69 |e betwee|n the gi|
|00000490| 76 65 6e 20 70 6f 69 6e | 74 73 2e 0d 0a 00 0d 0b |ven poin|ts......|
|000004a0| 00 28 61 29 20 20 28 34 | 2c 20 2d 33 29 2c 20 28 |.(a) (4|, -3), (|
|000004b0| 2d 31 2c 20 2d 33 29 20 | 20 20 20 20 20 20 20 20 |-1, -3) | |
|000004c0| 20 20 20 20 28 62 29 20 | 20 28 32 2c 20 2d 35 29 | (b) | (2, -5)|
|000004d0| 2c 20 28 32 2c 20 34 29 | 0d 0a 00 0d 0b 00 13 12 |, (2, 4)|........|
|000004e0| 31 53 4f 4c 55 54 49 4f | 4e 12 30 0d 0a 00 0d 0b |1SOLUTIO|N.0.....|
|000004f0| 00 61 29 20 42 65 63 61 | 75 73 65 20 74 68 65 20 |.a) Beca|use the |
|00000500| 11 33 79 11 31 2d 63 6f | 6f 72 64 69 6e 61 74 65 |.3y.1-co|ordinate|
|00000510| 73 20 61 72 65 20 65 71 | 75 61 6c 2c 20 77 65 20 |s are eq|ual, we |
|00000520| 65 6e 76 69 73 69 6f 6e | 20 61 20 68 6f 72 69 7a |envision| a horiz|
|00000530| 6f 6e 74 61 6c 20 6c 69 | 6e 65 20 74 68 72 6f 75 |ontal li|ne throu|
|00000540| 67 68 0d 0a 00 20 20 20 | 74 68 65 20 70 6f 69 6e |gh... |the poin|
|00000550| 74 73 20 28 34 2c 20 2d | 33 29 20 61 6e 64 20 28 |ts (4, -|3) and (|
|00000560| 2d 31 2c 20 2d 33 29 2e | 13 0d 0a 00 20 20 20 54 |-1, -3).|.... T|
|00000570| 68 65 20 64 69 73 74 61 | 6e 63 65 20 62 65 74 77 |he dista|nce betw|
|00000580| 65 65 6e 20 74 68 65 73 | 65 20 74 77 6f 20 70 6f |een thes|e two po|
|00000590| 69 6e 74 73 20 69 73 20 | 67 69 76 65 6e 20 62 79 |ints is |given by|
|000005a0| 20 74 68 65 20 61 62 73 | 6f 6c 75 74 65 20 76 61 | the abs|olute va|
|000005b0| 6c 75 65 20 6f 66 20 74 | 68 65 0d 0a 00 20 20 20 |lue of t|he... |
|000005c0| 64 69 66 66 65 72 65 6e | 63 65 20 6f 66 20 74 68 |differen|ce of th|
|000005d0| 65 69 72 20 11 33 78 11 | 31 2d 63 6f 6f 72 64 69 |eir .3x.|1-coordi|
|000005e0| 6e 61 74 65 73 2e 13 0d | 0a 00 20 20 20 54 68 65 |nates...|.. The|
|000005f0| 72 65 66 6f 72 65 2c 20 | 77 65 20 68 61 76 65 0d |refore, |we have.|
|00000600| 0a 00 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |..... | |
|00000610| 20 20 20 48 6f 72 69 7a | 6f 6e 74 61 6c 20 64 69 | Horiz|ontal di|
|00000620| 73 74 61 6e 63 65 20 3d | 20 7c 34 20 2d 20 28 2d |stance =| |4 - (-|
|00000630| 31 29 7c 20 3d 20 7c 34 | 20 2b 20 31 7c 20 3d 20 |1)| = |4| + 1| = |
|00000640| 35 2e 13 0d 0a 00 0d 0b | 00 62 29 20 42 65 63 61 |5.......|.b) Beca|
|00000650| 75 73 65 20 74 68 65 20 | 11 33 78 11 31 2d 63 6f |use the |.3x.1-co|
|00000660| 6f 72 64 69 6e 61 74 65 | 73 20 61 72 65 20 65 71 |ordinate|s are eq|
|00000670| 75 61 6c 2c 20 77 65 20 | 65 6e 76 69 73 69 6f 6e |ual, we |envision|
|00000680| 20 61 20 76 65 72 74 69 | 63 61 6c 20 6c 69 6e 65 | a verti|cal line|
|00000690| 20 74 68 72 6f 75 67 68 | 0d 0a 00 20 20 20 74 68 | through|... th|
|000006a0| 65 20 70 6f 69 6e 74 73 | 20 28 32 2c 20 2d 35 29 |e points| (2, -5)|
|000006b0| 20 61 6e 64 20 20 28 32 | 2c 20 34 29 2e 13 0d 0a | and (2|, 4)....|
|000006c0| 00 20 20 20 54 68 65 20 | 64 69 73 74 61 6e 63 65 |. The |distance|
|000006d0| 20 62 65 74 77 65 65 6e | 20 74 68 65 73 65 20 74 | between| these t|
|000006e0| 77 6f 20 70 6f 69 6e 74 | 73 20 69 73 20 67 69 76 |wo point|s is giv|
|000006f0| 65 6e 20 62 79 20 74 68 | 65 20 61 62 73 6f 6c 75 |en by th|e absolu|
|00000700| 74 65 20 76 61 6c 75 65 | 20 6f 66 20 74 68 65 0d |te value| of the.|
|00000710| 0a 00 20 20 20 64 69 66 | 66 65 72 65 6e 63 65 20 |.. dif|ference |
|00000720| 6f 66 20 74 68 65 69 72 | 20 11 33 79 11 31 2d 63 |of their| .3y.1-c|
|00000730| 6f 6f 72 64 69 6e 61 74 | 65 73 2e 13 0d 0a 00 20 |oordinat|es..... |
|00000740| 20 20 54 68 65 72 65 66 | 6f 72 65 2c 20 77 65 20 | Theref|ore, we |
|00000750| 68 61 76 65 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |have....|.. |
|00000760| 20 20 20 20 20 20 20 20 | 56 65 72 74 69 63 61 6c | |Vertical|
|00000770| 20 64 69 73 74 61 6e 63 | 65 20 3d 20 7c 2d 35 20 | distanc|e = |-5 |
|00000780| 2d 20 34 7c 20 3d 20 7c | 2d 39 7c 20 3d 20 39 2e |- 4| = ||-9| = 9.|
|00000790| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 50 2e 37 20 20 |...Secti|on P.7 |
|000007a0| 47 72 61 70 68 69 63 61 | 6c 20 52 65 70 72 65 73 |Graphica|l Repres|
|000007b0| 65 6e 74 61 74 69 6f 6e | 20 6f 66 20 44 61 74 61 |entation| of Data|
|000007c0| 0d 0b 00 28 61 29 20 20 | 46 69 6e 64 20 74 68 65 |...(a) |Find the|
|000007d0| 20 6c 65 6e 67 74 68 73 | 20 6f 66 20 74 68 65 20 | lengths| of the |
|000007e0| 74 77 6f 20 6c 65 67 73 | 20 6f 66 20 74 68 65 0d |two legs| of the.|
|000007f0| 0a 00 20 20 20 20 20 74 | 72 69 61 6e 67 6c 65 20 |.. t|riangle |
|00000800| 61 6e 64 20 75 73 65 20 | 74 68 65 20 50 79 74 68 |and use |the Pyth|
|00000810| 61 67 6f 72 65 61 6e 20 | 54 68 65 6f 72 65 6d 20 |agorean |Theorem |
|00000820| 20 14 6b 33 2d 31 2d 33 | 2e 6d 14 35 30 14 30 14 | .k3-1-3|.m.50.0.|
|00000830| 34 30 14 38 14 0d 0a 00 | 20 20 20 20 20 74 6f 20 |40.8....| to |
|00000840| 66 69 6e 64 20 74 68 65 | 20 6c 65 6e 67 74 68 20 |find the| length |
|00000850| 6f 66 20 74 68 65 20 68 | 79 70 6f 74 65 6e 75 73 |of the h|ypotenus|
|00000860| 65 2e 0d 0a 00 0d 0b 00 | 28 62 29 20 20 55 73 65 |e.......|(b) Use|
|00000870| 20 74 68 65 20 44 69 73 | 74 61 6e 63 65 20 46 6f | the Dis|tance Fo|
|00000880| 72 6d 75 6c 61 20 74 6f | 20 66 69 6e 64 20 74 68 |rmula to| find th|
|00000890| 65 0d 0a 00 20 20 20 20 | 20 6c 65 6e 67 74 68 20 |e... | length |
|000008a0| 6f 66 20 74 68 65 20 68 | 79 70 6f 74 65 6e 75 73 |of the h|ypotenus|
|000008b0| 65 2e 20 0d 0a 00 0d 0a | 00 0d 0b 00 13 12 31 53 |e. .....|......1S|
|000008c0| 4f 4c 55 54 49 4f 4e 12 | 30 0d 0a 00 0d 0b 00 61 |OLUTION.|0......a|
|000008d0| 29 20 54 68 65 20 6c 65 | 6e 67 74 68 20 6f 66 20 |) The le|ngth of |
|000008e0| 74 68 65 20 68 6f 72 69 | 7a 6f 6e 74 61 6c 20 73 |the hori|zontal s|
|000008f0| 69 64 65 20 6f 66 20 74 | 68 65 20 74 72 69 61 6e |ide of t|he trian|
|00000900| 67 6c 65 20 69 73 20 67 | 69 76 65 6e 20 62 79 0d |gle is g|iven by.|
|00000910| 0a 00 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |..... | |
|00000920| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 61 20 11 | | .3a .|
|00000930| 31 3d 20 7c 36 20 2d 20 | 32 7c 20 3d 20 34 2e 13 |1= |6 - |2| = 4..|
|00000940| 0d 0a 00 0d 0b 00 20 20 | 20 54 68 65 20 6c 65 6e |...... | The len|
|00000950| 67 74 68 20 6f 66 20 74 | 68 65 20 76 65 72 74 69 |gth of t|he verti|
|00000960| 63 61 6c 20 73 69 64 65 | 20 6f 66 20 74 68 65 20 |cal side| of the |
|00000970| 74 72 69 61 6e 67 6c 65 | 20 69 73 20 67 69 76 65 |triangle| is give|
|00000980| 6e 20 62 79 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |n by....|.. |
|00000990| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009a0| 11 33 62 20 11 31 3d 20 | 7c 35 20 2d 20 32 7c 20 |.3b .1= ||5 - 2| |
|000009b0| 3d 20 33 2e 13 0d 0a 00 | 0d 0b 00 20 20 20 55 73 |= 3.....|... Us|
|000009c0| 69 6e 67 20 74 68 65 20 | 50 79 74 68 61 67 6f 72 |ing the |Pythagor|
|000009d0| 65 61 6e 20 54 68 65 6f | 72 65 6d 2c 20 77 65 20 |ean Theo|rem, we |
|000009e0| 63 61 6e 20 66 69 6e 64 | 20 74 68 65 20 6c 65 6e |can find| the len|
|000009f0| 67 74 68 20 6f 66 20 74 | 68 65 20 68 79 70 6f 74 |gth of t|he hypot|
|00000a00| 65 6e 75 73 65 0d 0a 00 | 20 20 20 61 73 20 66 6f |enuse...| as fo|
|00000a10| 6c 6c 6f 77 73 2e 0d 0a | 00 20 20 20 20 20 20 20 |llows...|. |
|00000a20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00000a30| 32 32 20 20 20 20 32 20 | 20 20 20 32 0d 0b 00 20 |22 2 | 2... |
|00000a40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a50| 20 20 20 20 11 33 63 20 | 20 11 31 3d 20 11 33 61 | .3c | .1= .3a|
|00000a60| 20 20 11 31 2b 20 11 33 | 62 20 20 20 20 20 20 20 | .1+ .3|b |
|00000a70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000aa0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ab0| 20 11 31 2e 0d 0a 00 20 | 20 20 20 20 20 20 20 20 | .1.... | |
|00000ac0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ad0| 20 20 20 11 34 67 32 32 | 32 32 32 32 0d 0b 00 20 | .4g22|2222... |
|00000ae0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000af0| 20 20 20 20 20 20 20 20 | 20 20 66 20 11 32 32 20 | | f .22 |
|00000b00| 20 20 20 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 2... | |
|00000b10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 63 | | .3c|
|00000b20| 20 11 31 3d 20 11 34 76 | 20 11 33 61 20 20 11 31 | .1= .4v| .3a .1|
|00000b30| 2b 20 11 33 62 20 11 31 | 13 0d 0a 00 20 20 20 20 |+ .3b .1|.... |
|00000b40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b50| 20 20 20 20 20 20 20 20 | 11 34 67 32 32 32 32 32 | |.4g22222|
|00000b60| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00000b70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 66 | | f|
|00000b80| 20 11 32 32 20 20 20 20 | 32 0d 0b 00 20 20 20 20 | .22 |2... |
|00000b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ba0| 20 20 20 20 11 31 3d 20 | 11 34 76 20 11 31 34 20 | .1= |.4v .14 |
|00000bb0| 20 2b 20 33 20 13 0d 0a | 00 20 20 20 20 20 20 20 | + 3 ...|. |
|00000bc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000bd0| 20 20 20 20 20 11 34 67 | 32 0d 0b 00 20 20 20 20 | .4g|2... |
|00000be0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000bf0| 20 20 20 20 20 20 20 66 | 0d 0b 00 20 20 20 20 20 | f|... |
|00000c00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c10| 20 20 20 11 31 3d 20 11 | 34 76 20 11 31 32 35 20 | .1= .|4v .125 |
|00000c20| 3d 20 35 13 0d 0a 00 0d | 0b 00 62 29 20 55 73 69 |= 5.....|..b) Usi|
|00000c30| 6e 67 20 74 68 65 20 44 | 69 73 74 61 6e 63 65 20 |ng the D|istance |
|00000c40| 46 6f 72 6d 75 6c 61 20 | 77 69 74 68 20 28 11 33 |Formula |with (.3|
|00000c50| 78 20 11 31 2c 20 11 33 | 79 20 11 31 29 20 3d 20 |x .1, .3|y .1) = |
|00000c60| 28 32 2c 20 32 29 20 61 | 6e 64 20 28 11 33 78 20 |(2, 2) a|nd (.3x |
|00000c70| 11 31 2c 20 11 33 79 20 | 11 31 29 20 3d 20 28 36 |.1, .3y |.1) = (6|
|00000c80| 2c 20 35 29 2c 0d 0b 00 | 20 20 20 20 20 20 20 20 |, 5),...| |
|00000c90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ca0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 31 | | .21|
|00000cb0| 20 20 20 31 20 20 20 20 | 20 20 20 20 20 20 20 20 | 1 | |
|00000cc0| 20 20 20 20 20 32 20 20 | 20 32 0d 0a 00 20 20 20 | 2 | 2... |
|00000cd0| 11 31 77 65 20 66 69 6e | 64 20 74 68 65 20 6c 65 |.1we fin|d the le|
|00000ce0| 6e 67 74 68 20 6f 66 20 | 74 68 65 20 68 79 70 6f |ngth of |the hypo|
|00000cf0| 74 65 6e 75 73 65 20 74 | 6f 20 62 65 20 20 20 20 |tenuse t|o be |
|00000d00| 20 20 20 20 20 20 0d 0a | 00 0d 0b 00 20 20 20 20 | ..|.... |
|00000d10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d20| 20 20 20 20 20 20 20 20 | 11 34 67 32 32 32 32 32 | |.4g22222|
|00000d30| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00000d40| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00000d50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 66 | | f|
|00000d60| 20 20 20 20 20 20 20 20 | 20 11 32 32 20 20 20 20 | | .22 |
|00000d70| 20 20 20 20 20 20 20 20 | 32 0d 0b 00 20 20 20 20 | |2... |
|00000d80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d90| 20 20 11 33 64 20 11 31 | 3d 20 11 34 76 20 11 31 | .3d .1|= .4v .1|
|00000da0| 28 11 33 78 20 20 11 31 | 2d 20 11 33 78 20 11 31 |(.3x .1|- .3x .1|
|00000db0| 29 20 20 2b 20 28 11 33 | 79 20 20 11 31 2d 20 11 |) + (.3|y .1- .|
|00000dc0| 33 79 20 11 31 29 20 20 | 0d 0b 00 20 20 20 20 20 |3y .1) |... |
|00000dd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000de0| 20 20 20 20 20 20 20 20 | 20 11 32 32 20 20 20 20 | | .22 |
|00000df0| 31 20 20 20 20 20 20 20 | 32 20 20 20 20 31 20 20 |1 |2 1 |
|00000e00| 20 11 31 13 0d 0a 00 20 | 20 20 20 20 20 20 20 20 | .1.... | |
|00000e10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e20| 20 20 20 11 34 67 32 32 | 32 32 32 32 32 32 32 32 | .4g22|22222222|
|00000e30| 32 32 32 32 32 32 32 32 | 0d 0b 00 20 20 20 20 20 |22222222|... |
|00000e40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e50| 20 20 20 20 20 20 66 20 | 20 20 20 20 20 20 11 32 | f | .2|
|00000e60| 32 20 20 20 20 20 20 20 | 20 20 20 32 0d 0b 00 20 |2 | 2... |
|00000e70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e80| 20 20 20 20 20 20 20 11 | 31 3d 20 11 34 76 20 11 | .|1= .4v .|
|00000e90| 31 28 36 20 2d 20 32 29 | 20 20 2b 20 28 35 20 2d |1(6 - 2)| + (5 -|
|00000ea0| 20 32 29 20 13 0d 0a 00 | 0d 0b 00 20 20 20 20 20 | 2) ....|... |
|00000eb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ec0| 20 20 20 20 20 20 20 11 | 34 67 32 32 32 32 32 0d | .|4g22222.|
|00000ed0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000ee0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 66 0d 0b | | f..|
|00000ef0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000f00| 20 20 20 20 20 20 20 20 | 20 11 31 3d 20 11 34 76 | | .1= .4v|
|00000f10| 20 11 31 31 36 20 2b 20 | 39 13 0d 0a 00 0d 0b 00 | .116 + |9.......|
|00000f20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f30| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 34 67 32 | | .4g2|
|00000f40| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000f50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 66 0d | | f.|
|00000f60| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000f70| 20 20 20 20 20 20 20 20 | 20 20 11 31 3d 20 11 34 | | .1= .4|
|00000f80| 76 20 11 31 32 35 20 3d | 20 35 2e 0d 0a 00 53 65 |v .125 =| 5....Se|
|00000f90| 63 74 69 6f 6e 20 50 2e | 37 20 20 47 72 61 70 68 |ction P.|7 Graph|
|00000fa0| 69 63 61 6c 20 52 65 70 | 72 65 73 65 6e 74 61 74 |ical Rep|resentat|
|00000fb0| 69 6f 6e 20 6f 66 20 44 | 61 74 61 0d 0b 00 53 68 |ion of D|ata...Sh|
|00000fc0| 6f 77 20 74 68 61 74 20 | 74 68 65 20 70 6f 69 6e |ow that |the poin|
|00000fd0| 74 73 20 28 2d 31 2c 20 | 34 29 2c 20 28 32 2c 20 |ts (-1, |4), (2, |
|00000fe0| 31 29 2c 20 61 6e 64 20 | 28 34 2c 20 33 29 20 66 |1), and |(4, 3) f|
|00000ff0| 6f 72 6d 20 74 68 65 20 | 76 65 72 74 69 63 65 73 |orm the |vertices|
|00001000| 20 6f 66 20 61 20 72 69 | 67 68 74 0d 0a 00 74 72 | of a ri|ght...tr|
|00001010| 69 61 6e 67 6c 65 2e 0d | 0a 00 0d 0b 00 13 12 31 |iangle..|.......1|
|00001020| 53 4f 4c 55 54 49 4f 4e | 12 30 0d 0a 00 0d 0b 00 |SOLUTION|.0......|
|00001030| 57 65 20 62 65 67 69 6e | 20 62 79 20 70 6c 6f 74 |We begin| by plot|
|00001040| 74 69 6e 67 20 74 68 65 | 20 74 68 72 65 65 20 70 |ting the| three p|
|00001050| 6f 69 6e 74 73 20 61 6e | 64 0d 0a 00 66 6f 72 6d |oints an|d...form|
|00001060| 69 6e 67 20 74 68 65 20 | 74 72 69 61 6e 67 6c 65 |ing the |triangle|
|00001070| 20 61 73 20 73 68 6f 77 | 6e 20 69 6e 20 74 68 65 | as show|n in the|
|00001080| 20 66 69 67 75 72 65 0d | 0a 00 61 74 20 74 68 65 | figure.|..at the|
|00001090| 20 72 69 67 68 74 2e 20 | 20 20 20 20 20 20 20 20 | right. | |
|000010a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010b0| 20 20 20 20 20 20 20 20 | 20 14 6b 33 2d 31 2d 36 | | .k3-1-6|
|000010c0| 2e 6d 14 35 30 14 31 32 | 14 34 30 14 38 14 13 0d |.m.50.12|.40.8...|
|000010d0| 0a 00 55 73 69 6e 67 20 | 74 68 65 20 44 69 73 74 |..Using |the Dist|
|000010e0| 61 6e 63 65 20 46 6f 72 | 6d 75 6c 61 2c 20 77 65 |ance For|mula, we|
|000010f0| 20 66 69 6e 64 20 74 68 | 65 20 6c 65 6e 67 74 68 | find th|e length|
|00001100| 73 0d 0a 00 6f 66 20 74 | 68 65 20 74 68 72 65 65 |s...of t|he three|
|00001110| 20 73 69 64 65 73 20 6f | 66 20 74 68 65 20 74 72 | sides o|f the tr|
|00001120| 69 61 6e 67 6c 65 2e 0d | 0a 00 20 20 20 20 20 20 |iangle..|.. |
|00001130| 20 20 20 20 20 20 11 34 | 67 32 32 32 32 32 32 32 | .4|g2222222|
|00001140| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 20 20 |22222222|222222 |
|00001150| 20 20 20 67 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | g2...| |
|00001160| 20 20 20 66 20 20 20 20 | 20 20 20 20 20 20 11 32 | f | .2|
|00001170| 32 20 20 20 20 20 20 20 | 20 20 20 32 20 20 20 20 |2 | 2 |
|00001180| 11 34 66 0d 0b 00 20 20 | 20 20 20 11 33 64 20 20 |.4f... | .3d |
|00001190| 11 31 3d 20 11 34 76 20 | 11 31 5b 32 20 2d 20 28 |.1= .4v |.1[2 - (|
|000011a0| 2d 31 29 5d 20 20 2b 20 | 28 31 20 2d 20 34 29 20 |-1)] + |(1 - 4) |
|000011b0| 20 3d 20 11 34 76 20 11 | 31 31 38 0d 0b 00 20 20 | = .4v .|118... |
|000011c0| 20 20 20 20 11 32 31 20 | 20 20 20 20 20 20 20 20 | .21 | |
|000011d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000011e0| 20 20 20 20 20 20 20 20 | 20 11 31 13 0d 0a 00 20 | | .1.... |
|000011f0| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 67 32 32 | | .4g22|
|00001200| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00001210| 20 20 20 20 20 67 0d 0b | 00 20 20 20 20 20 20 20 | g..|. |
|00001220| 20 20 20 20 66 20 20 20 | 20 20 20 20 11 32 32 20 | f | .22 |
|00001230| 20 20 20 20 20 20 20 20 | 20 32 20 20 20 20 11 34 | | 2 .4|
|00001240| 66 0d 0b 00 20 20 20 20 | 20 11 33 64 20 20 11 31 |f... | .3d .1|
|00001250| 3d 20 11 34 76 20 11 31 | 28 34 20 2d 20 32 29 20 |= .4v .1|(4 - 2) |
|00001260| 20 2b 20 28 33 20 2d 20 | 31 29 20 20 3d 20 11 34 | + (3 - |1) = .4|
|00001270| 76 20 11 31 38 0d 0b 00 | 20 20 20 20 20 20 11 32 |v .18...| .2|
|00001280| 32 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |2 | |
|00001290| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000012a0| 31 13 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |1.... | |
|000012b0| 20 11 34 67 32 32 32 32 | 32 32 32 32 32 32 32 32 | .4g2222|22222222|
|000012c0| 32 32 32 32 32 32 32 32 | 32 20 20 20 20 20 67 32 |22222222|2 g2|
|000012d0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 66 20 |... | f |
|000012e0| 20 20 20 20 20 20 20 20 | 20 11 32 32 20 20 20 20 | | .22 |
|000012f0| 20 20 20 20 20 20 32 20 | 20 20 20 11 34 66 0d 0b | 2 | .4f..|
|00001300| 00 20 20 20 20 20 11 33 | 64 20 20 11 31 3d 20 11 |. .3|d .1= .|
|00001310| 34 76 20 11 31 5b 34 20 | 2d 20 28 2d 31 29 5d 20 |4v .1[4 |- (-1)] |
|00001320| 20 2b 20 28 33 20 2d 20 | 34 29 20 20 3d 20 11 34 | + (3 - |4) = .4|
|00001330| 76 20 11 31 32 36 0d 0b | 00 20 20 20 20 20 20 11 |v .126..|. .|
|00001340| 32 33 00 0c 20 20 20 20 | 20 20 20 20 20 20 20 20 |23.. | |
|00001350| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001360| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001370| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001380| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001390| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013a0| 20 20 20 20 20 11 31 2e | 0d 0a 00 0d 0b 00 20 20 | .1.|...... |
|000013b0| 20 20 20 20 20 20 11 32 | 32 20 20 20 20 20 32 20 | .2|2 2 |
|000013c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013d0| 20 20 32 0d 0b 00 11 31 | 53 69 6e 63 65 20 11 33 | 2....1|Since .3|
|000013e0| 64 20 20 20 11 31 2b 20 | 11 33 64 20 20 20 11 31 |d .1+ |.3d .1|
|000013f0| 3d 20 31 38 20 2b 20 38 | 20 3d 20 32 36 20 3d 20 |= 18 + 8| = 26 = |
|00001400| 11 33 64 20 20 11 31 2c | 20 77 65 20 63 61 6e 20 |.3d .1,| we can |
|00001410| 63 6f 6e 63 6c 75 64 65 | 20 66 72 6f 6d 20 74 68 |conclude| from th|
|00001420| 65 20 50 79 74 68 61 67 | 6f 72 65 61 6e 0d 0b 00 |e Pythag|orean...|
|00001430| 20 20 20 20 20 20 20 11 | 32 31 20 20 20 20 20 32 | .|21 2|
|00001440| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001450| 20 20 20 33 0d 0a 00 11 | 31 54 68 65 6f 72 65 6d | 3....|1Theorem|
|00001460| 20 74 68 61 74 20 74 68 | 65 20 74 72 69 61 6e 67 | that th|e triang|
|00001470| 6c 65 20 69 73 20 61 20 | 72 69 67 68 74 20 74 72 |le is a |right tr|
|00001480| 69 61 6e 67 6c 65 2e 0d | 0a 00 53 65 63 74 69 6f |iangle..|..Sectio|
|00001490| 6e 20 50 2e 37 20 20 47 | 72 61 70 68 69 63 61 6c |n P.7 G|raphical|
|000014a0| 20 52 65 70 72 65 73 65 | 6e 74 61 74 69 6f 6e 20 | Represe|ntation |
|000014b0| 6f 66 20 44 61 74 61 0d | 0b 00 55 73 65 20 74 68 |of Data.|..Use th|
|000014c0| 65 20 4d 69 64 70 6f 69 | 6e 74 20 46 6f 72 6d 75 |e Midpoi|nt Formu|
|000014d0| 6c 61 20 74 6f 20 65 73 | 74 69 6d 61 74 65 20 74 |la to es|timate t|
|000014e0| 68 65 20 73 61 6c 65 73 | 20 6f 66 20 61 20 63 6f |he sales| of a co|
|000014f0| 6d 70 61 6e 79 20 66 6f | 72 20 31 39 39 31 2c 20 |mpany fo|r 1991, |
|00001500| 67 69 76 65 6e 0d 0a 00 | 74 68 65 20 66 6f 6c 6c |given...|the foll|
|00001510| 6f 77 69 6e 67 20 73 61 | 6c 65 73 20 66 6f 72 20 |owing sa|les for |
|00001520| 31 39 38 39 20 61 6e 64 | 20 31 39 39 33 2e 20 20 |1989 and| 1993. |
|00001530| 41 73 73 75 6d 65 20 74 | 68 61 74 20 74 68 65 20 |Assume t|hat the |
|00001540| 73 61 6c 65 73 20 66 6f | 6c 6c 6f 77 65 64 20 61 |sales fo|llowed a|
|00001550| 20 0d 0a 00 6c 69 6e 65 | 61 72 20 70 61 74 74 65 | ...line|ar patte|
|00001560| 72 6e 2e 12 31 0d 0b 00 | 20 20 20 20 20 20 20 20 |rn..1...| |
|00001570| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001580| 34 5b 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |4[222222|22222222|
|00001590| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 5d |22222222|2222222]|
|000015a0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000015b0| 20 20 20 20 20 20 20 20 | 20 20 21 20 20 20 20 20 | | ! |
|000015c0| 20 20 21 20 20 20 20 20 | 20 20 20 20 20 21 20 20 | ! | ! |
|000015d0| 20 20 20 20 20 20 20 20 | 21 0d 0b 00 20 20 20 20 | |!... |
|000015e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015f0| 20 20 20 21 20 11 31 59 | 65 61 72 20 20 11 34 21 | ! .1Y|ear .4!|
|00001600| 20 20 20 11 31 31 39 38 | 39 20 20 20 11 34 21 20 | .1198|9 .4! |
|00001610| 20 20 11 31 31 39 39 33 | 20 20 20 11 34 21 0d 0b | .11993| .4!..|
|00001620| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001630| 20 20 20 20 20 20 20 20 | 21 20 20 20 20 20 20 20 | |! |
|00001640| 21 20 20 20 20 20 20 20 | 20 20 20 21 20 20 20 20 |! | ! |
|00001650| 20 20 20 20 20 20 21 0d | 0b 00 20 20 20 20 20 20 | !.|.. |
|00001660| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001670| 20 6c 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 | l222222|22222222|
|00001680| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 6a |22222222|2222222j|
|00001690| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000016a0| 20 20 20 20 20 20 20 20 | 20 20 21 20 20 20 20 20 | | ! |
|000016b0| 20 20 21 20 20 20 20 20 | 20 20 20 20 20 21 20 20 | ! | ! |
|000016c0| 20 20 20 20 20 20 20 20 | 21 0d 0b 00 20 20 20 20 | |!... |
|000016d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000016e0| 20 20 20 21 20 11 31 53 | 61 6c 65 73 20 11 34 21 | ! .1S|ales .4!|
|000016f0| 20 11 31 24 34 36 30 2c | 30 30 30 20 11 34 21 20 | .1$460,|000 .4! |
|00001700| 11 31 24 37 38 30 2c 30 | 30 30 20 11 34 21 0d 0b |.1$780,0|00 .4!..|
|00001710| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001720| 20 20 20 20 20 20 20 20 | 21 20 20 20 20 20 20 20 | |! |
|00001730| 21 20 20 20 20 20 20 20 | 20 20 20 21 20 20 20 20 |! | ! |
|00001740| 20 20 20 20 20 20 21 0d | 0b 00 20 20 20 20 20 20 | !.|.. |
|00001750| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001760| 20 6c 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 | l222222|22222222|
|00001770| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 6a |22222222|2222222j|
|00001780| 11 31 12 30 0d 0a 00 13 | 12 31 53 4f 4c 55 54 49 |.1.0....|.1SOLUTI|
|00001790| 4f 4e 12 30 0d 0a 00 0d | 0b 00 49 66 20 77 65 20 |ON.0....|..If we |
|000017a0| 6c 65 74 20 28 11 33 78 | 20 11 31 2c 20 11 33 79 |let (.3x| .1, .3y|
|000017b0| 20 11 31 29 20 3d 20 28 | 31 39 38 39 2c 20 34 36 | .1) = (|1989, 46|
|000017c0| 30 2c 30 30 30 29 20 61 | 6e 64 20 28 11 33 78 20 |0,000) a|nd (.3x |
|000017d0| 11 31 2c 20 11 33 79 20 | 11 31 29 20 3d 20 28 31 |.1, .3y |.1) = (1|
|000017e0| 39 39 33 2c 20 37 38 30 | 2c 30 30 30 29 2c 20 74 |993, 780|,000), t|
|000017f0| 68 65 6e 20 31 39 39 31 | 0d 0b 00 20 20 20 20 20 |hen 1991|... |
|00001800| 20 20 20 20 20 20 20 11 | 32 31 20 20 20 31 20 20 | .|21 1 |
|00001810| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001820| 20 20 20 20 20 20 20 20 | 32 20 20 20 32 0d 0a 00 | |2 2...|
|00001830| 11 31 69 73 20 74 68 65 | 20 11 33 78 11 31 2d 63 |.1is the| .3x.1-c|
|00001840| 6f 6f 72 64 69 6e 61 74 | 65 20 6f 66 20 74 68 65 |oordinat|e of the|
|00001850| 20 6d 69 64 70 6f 69 6e | 74 20 62 65 74 77 65 65 | midpoin|t betwee|
|00001860| 6e 20 74 68 65 73 65 20 | 74 77 6f 20 70 6f 69 6e |n these |two poin|
|00001870| 74 73 2e 13 0d 0a 00 0d | 0b 00 54 68 65 72 65 66 |ts......|..Theref|
|00001880| 6f 72 65 2c 20 74 68 65 | 20 11 33 79 11 31 2d 63 |ore, the| .3y.1-c|
|00001890| 6f 6f 72 64 69 6e 61 74 | 65 20 6f 66 20 74 68 65 |oordinat|e of the|
|000018a0| 20 6d 69 64 70 6f 69 6e | 74 20 6d 75 73 74 20 72 | midpoin|t must r|
|000018b0| 65 70 72 65 73 65 6e 74 | 20 74 68 65 20 73 61 6c |epresent| the sal|
|000018c0| 65 73 20 66 6f 72 20 31 | 39 39 31 2e 13 0d 0a 00 |es for 1|991.....|
|000018d0| 0d 0b 00 54 68 61 74 20 | 69 73 2c 20 74 68 65 20 |...That |is, the |
|000018e0| 31 39 39 31 20 73 61 6c | 65 73 20 68 61 64 20 61 |1991 sal|es had a|
|000018f0| 20 74 6f 74 61 6c 20 64 | 6f 6c 6c 61 72 20 61 6d | total d|ollar am|
|00001900| 6f 75 6e 74 20 6f 66 0d | 0a 00 20 20 20 20 20 20 |ount of.|.. |
|00001910| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 33 79 20 | | .3y |
|00001920| 20 11 31 2b 20 11 33 79 | 0d 0b 00 20 20 20 20 20 | .1+ .3y|... |
|00001930| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00001940| 31 20 20 20 20 32 20 20 | 20 11 31 34 36 30 2c 30 |1 2 | .1460,0|
|00001950| 30 30 20 2b 20 37 38 30 | 2c 30 30 30 20 20 20 31 |00 + 780|,000 1|
|00001960| 2c 32 34 30 2c 30 30 30 | 0d 0b 00 20 20 20 20 20 |,240,000|... |
|00001970| 31 39 39 31 20 53 61 6c | 65 73 20 3d 20 11 34 32 |1991 Sal|es = .42|
|00001980| 32 32 32 32 32 32 20 11 | 31 3d 20 11 34 32 32 32 |222222 .|1= .4222|
|00001990| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 20 11 |22222222|222222 .|
|000019a0| 31 3d 20 11 34 32 32 32 | 32 32 32 32 32 32 20 11 |1= .4222|222222 .|
|000019b0| 31 3d 20 24 36 32 30 2c | 30 30 30 2e 0d 0b 00 20 |1= $620,|000.... |
|000019c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000019d0| 20 20 20 20 32 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|000019e0| 20 20 20 32 20 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|000019f0| 20 20 20 32 0d 0a 00 53 | 65 63 74 69 6f 6e 20 50 | 2...S|ection P|
|00001a00| 2e 37 20 20 47 72 61 70 | 68 69 63 61 6c 20 52 65 |.7 Grap|hical Re|
|00001a10| 70 72 65 73 65 6e 74 61 | 74 69 6f 6e 20 6f 66 20 |presenta|tion of |
|00001a20| 44 61 74 61 0d 0b 00 46 | 69 6e 64 20 11 33 78 20 |Data...F|ind .3x |
|00001a30| 11 31 73 6f 20 74 68 61 | 74 20 74 68 65 20 64 69 |.1so tha|t the di|
|00001a40| 73 74 61 6e 63 65 20 62 | 65 74 77 65 65 6e 20 74 |stance b|etween t|
|00001a50| 68 65 20 70 6f 69 6e 74 | 73 20 28 11 33 78 11 31 |he point|s (.3x.1|
|00001a60| 2c 20 34 29 20 61 6e 64 | 20 28 32 2c 20 2d 31 29 |, 4) and| (2, -1)|
|00001a70| 20 69 73 20 31 33 2e 0d | 0a 00 0d 0a 00 13 12 31 | is 13..|.......1|
|00001a80| 53 4f 4c 55 54 49 4f 4e | 12 30 0d 0a 00 0d 0b 00 |SOLUTION|.0......|
|00001a90| 55 73 69 6e 67 20 74 68 | 65 20 44 69 73 74 61 6e |Using th|e Distan|
|00001aa0| 63 65 20 46 6f 72 6d 75 | 6c 61 2c 20 77 65 20 6f |ce Formu|la, we o|
|00001ab0| 62 74 61 69 6e 20 74 68 | 65 20 66 6f 6c 6c 6f 77 |btain th|e follow|
|00001ac0| 69 6e 67 2e 0d 0a 00 20 | 20 20 11 34 67 32 32 32 |ing.... | .4g222|
|00001ad0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00001ae0| 32 32 0d 0b 00 20 20 66 | 20 20 20 20 20 20 20 11 |22... f| .|
|00001af0| 32 32 20 20 20 20 20 20 | 20 20 20 20 20 20 20 32 |22 | 2|
|00001b00| 0d 0b 00 20 11 34 76 20 | 11 31 28 11 33 78 20 11 |... .4v |.1(.3x .|
|00001b10| 31 2d 20 32 29 20 20 2b | 20 5b 34 20 2d 20 28 2d |1- 2) +| [4 - (-|
|00001b20| 31 29 5d 20 20 3d 20 31 | 33 13 0d 0a 00 20 20 20 |1)] = 1|3.... |
|00001b30| 20 20 20 20 20 20 20 11 | 32 32 0d 0b 00 20 20 20 | .|22... |
|00001b40| 20 20 20 20 20 20 11 33 | 78 20 20 11 31 2d 20 34 | .3|x .1- 4|
|00001b50| 11 33 78 20 11 31 2b 20 | 34 20 2b 20 32 35 20 3d |.3x .1+ |4 + 25 =|
|00001b60| 20 31 36 39 20 20 20 20 | 20 20 20 20 20 20 20 20 | 169 | |
|00001b70| 20 20 20 20 20 20 11 32 | 12 31 53 71 75 61 72 65 | .2|.1Square|
|00001b80| 20 62 6f 74 68 20 73 69 | 64 65 73 12 30 13 0d 0a | both si|des.0...|
|00001b90| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 32 0d |. | 2.|
|00001ba0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 |.. | .3|
|00001bb0| 78 20 20 11 31 2d 20 34 | 11 33 78 20 11 31 2d 20 |x .1- 4|.3x .1- |
|00001bc0| 31 34 30 20 3d 20 30 20 | 20 20 20 20 20 20 20 20 |140 = 0 | |
|00001bd0| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 12 31 53 | | .2.1S|
|00001be0| 74 61 6e 64 61 72 64 20 | 66 6f 72 6d 12 30 13 0d |tandard |form.0..|
|00001bf0| 0a 00 0d 0b 00 20 20 20 | 20 20 20 20 20 20 11 31 |..... | .1|
|00001c00| 28 11 33 78 20 11 31 2d | 20 31 34 29 28 11 33 78 |(.3x .1-| 14)(.3x|
|00001c10| 20 11 31 2b 20 31 30 29 | 20 3d 20 30 20 20 20 20 | .1+ 10)| = 0 |
|00001c20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001c30| 11 32 12 31 46 61 63 74 | 6f 72 12 30 13 0d 0a 00 |.2.1Fact|or.0....|
|00001c40| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001c50| 20 20 20 20 20 20 11 33 | 78 20 11 31 2d 20 31 34 | .3|x .1- 14|
|00001c60| 20 3d 20 30 20 20 11 34 | 35 35 36 20 20 11 33 78 | = 0 .4|556 .3x|
|00001c70| 20 11 31 3d 20 31 34 20 | 20 20 20 20 20 20 12 31 | .1= 14 | .1|
|00001c80| 11 32 53 65 74 20 66 69 | 72 73 74 20 66 61 63 74 |.2Set fi|rst fact|
|00001c90| 6f 72 20 65 71 75 61 6c | 20 74 6f 20 30 11 31 12 |or equal| to 0.1.|
|00001ca0| 30 13 0d 0a 00 0d 0b 00 | 20 20 20 20 20 20 20 20 |0.......| |
|00001cb0| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 78 20 11 | | .3x .|
|00001cc0| 31 2b 20 31 30 20 3d 20 | 30 20 20 11 34 35 35 36 |1+ 10 = |0 .4556|
|00001cd0| 20 20 11 33 78 20 11 31 | 3d 20 2d 31 30 20 20 20 | .3x .1|= -10 |
|00001ce0| 20 20 20 12 31 11 32 53 | 65 74 20 73 65 63 6f 6e | .1.2S|et secon|
|00001cf0| 64 20 66 61 63 74 6f 72 | 20 65 71 75 61 6c 20 74 |d factor| equal t|
|00001d00| 6f 20 30 11 31 12 30 13 | 0d 0a 00 0d 0b 00 54 68 |o 0.1.0.|......Th|
|00001d10| 75 73 2c 20 74 68 65 72 | 65 20 61 72 65 20 74 77 |us, ther|e are tw|
|00001d20| 6f 20 73 6f 6c 75 74 69 | 6f 6e 73 2e 20 20 54 68 |o soluti|ons. Th|
|00001d30| 61 74 20 69 73 2c 20 74 | 68 65 20 70 6f 69 6e 74 |at is, t|he point|
|00001d40| 73 20 28 31 34 2c 20 34 | 29 20 61 6e 64 20 28 2d |s (14, 4|) and (-|
|00001d50| 31 30 2c 20 34 29 20 61 | 72 65 0d 0a 00 65 61 63 |10, 4) a|re...eac|
|00001d60| 68 20 31 33 20 75 6e 69 | 74 73 20 66 72 6f 6d 20 |h 13 uni|ts from |
|00001d70| 74 68 65 20 70 6f 69 6e | 74 20 28 32 2c 20 2d 31 |the poin|t (2, -1|
|00001d80| 29 2e 0d 0a 00 53 65 63 | 74 69 6f 6e 20 50 2e 37 |)....Sec|tion P.7|
|00001d90| 20 20 47 72 61 70 68 69 | 63 61 6c 20 52 65 70 72 | Graphi|cal Repr|
|00001da0| 65 73 65 6e 74 61 74 69 | 6f 6e 20 6f 66 20 44 61 |esentati|on of Da|
|00001db0| 74 61 0d 0b 00 28 61 29 | 20 20 50 6c 6f 74 20 74 |ta...(a)| Plot t|
|00001dc0| 68 65 20 70 6f 69 6e 74 | 73 20 28 2d 32 2c 20 33 |he point|s (-2, 3|
|00001dd0| 29 20 61 6e 64 20 28 36 | 2c 20 31 29 2e 20 20 0d |) and (6|, 1). .|
|00001de0| 0a 00 28 62 29 20 20 46 | 69 6e 64 20 74 68 65 20 |..(b) F|ind the |
|00001df0| 64 69 73 74 61 6e 63 65 | 20 62 65 74 77 65 65 6e |distance| between|
|00001e00| 20 74 68 65 20 74 77 6f | 20 70 6f 69 6e 74 73 2e | the two| points.|
|00001e10| 0d 0a 00 28 63 29 20 20 | 46 69 6e 64 20 74 68 65 |...(c) |Find the|
|00001e20| 20 6d 69 64 70 6f 69 6e | 74 20 6f 66 20 74 68 65 | midpoin|t of the|
|00001e30| 20 6c 69 6e 65 20 73 65 | 67 6d 65 6e 74 20 6a 6f | line se|gment jo|
|00001e40| 69 6e 69 6e 67 20 74 68 | 65 20 74 77 6f 20 70 6f |ining th|e two po|
|00001e50| 69 6e 74 73 2e 0d 0a 00 | 0d 0a 00 13 12 31 53 4f |ints....|.....1SO|
|00001e60| 4c 55 54 49 4f 4e 12 30 | 0d 0a 00 0d 0b 00 61 29 |LUTION.0|......a)|
|00001e70| 20 57 65 20 70 6c 6f 74 | 20 74 68 65 20 74 77 6f | We plot| the two|
|00001e80| 20 70 6f 69 6e 74 73 20 | 61 73 20 73 68 6f 77 6e | points |as shown|
|00001e90| 20 69 6e 20 74 68 65 20 | 67 72 61 70 68 0d 0a 00 | in the |graph...|
|00001ea0| 0d 0b 00 20 20 20 61 74 | 20 74 68 65 20 72 69 67 |... at| the rig|
|00001eb0| 68 74 2e 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |ht. | |
|00001ec0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 14 6b | | .k|
|00001ed0| 33 2d 31 2d 34 61 2e 6d | 14 35 31 14 31 33 14 35 |3-1-4a.m|.51.13.5|
|00001ee0| 30 14 38 14 14 76 6b 33 | 2d 31 2d 34 62 2e 6d 14 |0.8..vk3|-1-4b.m.|
|00001ef0| 35 31 14 31 33 14 35 30 | 14 38 14 14 76 6b 33 2d |51.13.50|.8..vk3-|
|00001f00| 31 2d 34 63 2e 6d 14 35 | 31 14 31 33 14 35 30 14 |1-4c.m.5|1.13.50.|
|00001f10| 38 14 13 0d 0a 00 0d 0a | 00 0d 0a 00 0d 0b 00 62 |8.......|.......b|
|00001f20| 29 20 54 6f 20 66 69 6e | 64 20 74 68 65 20 64 69 |) To fin|d the di|
|00001f30| 73 74 61 6e 63 65 20 62 | 65 74 77 65 65 6e 20 74 |stance b|etween t|
|00001f40| 68 65 20 70 6f 69 6e 74 | 73 20 77 65 20 0d 0a 00 |he point|s we ...|
|00001f50| 0d 0b 00 20 20 20 6c 65 | 74 20 28 11 33 78 20 11 |... le|t (.3x .|
|00001f60| 31 2c 20 11 33 79 20 11 | 31 29 20 3d 20 28 2d 32 |1, .3y .|1) = (-2|
|00001f70| 2c 20 33 29 20 61 6e 64 | 20 28 11 33 78 20 11 31 |, 3) and| (.3x .1|
|00001f80| 2c 20 11 33 79 20 11 31 | 29 20 3d 20 28 36 2c 20 |, .3y .1|) = (6, |
|00001f90| 31 29 2e 0d 0b 00 20 20 | 20 20 20 20 20 20 20 11 |1).... | .|
|00001fa0| 32 31 20 20 20 31 20 20 | 20 20 20 20 20 20 20 20 |21 1 | |
|00001fb0| 20 20 20 20 20 20 20 20 | 32 20 20 20 32 20 20 20 | |2 2 |
|00001fc0| 20 20 20 20 20 20 20 20 | 11 31 13 0d 0a 00 20 20 | |.1.... |
|00001fd0| 20 54 68 65 6e 20 75 73 | 69 6e 67 20 74 68 65 20 | Then us|ing the |
|00001fe0| 44 69 73 74 61 6e 63 65 | 20 46 6f 72 6d 75 6c 61 |Distance| Formula|
|00001ff0| 20 77 65 20 68 61 76 65 | 0d 0a 00 20 20 20 20 20 | we have|... |
|00002000| 20 20 20 20 20 20 20 20 | 20 11 34 67 32 32 32 32 | | .4g2222|
|00002010| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002020| 32 32 20 20 20 20 20 67 | 32 32 32 32 32 32 32 32 |22 g|22222222|
|00002030| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 20 20 20 |22222222|22222 |
|00002040| 20 20 67 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | g2... | |
|00002050| 20 20 20 20 66 20 20 20 | 20 20 20 20 20 20 11 32 | f | .2|
|00002060| 32 20 20 20 20 20 20 20 | 20 20 20 20 20 32 20 20 |2 | 2 |
|00002070| 20 20 11 34 66 20 20 20 | 20 20 20 20 20 20 20 11 | .4f | .|
|00002080| 32 32 20 20 20 20 20 20 | 20 20 20 20 32 20 20 20 |22 | 2 |
|00002090| 20 11 34 66 0d 0b 00 20 | 20 20 20 20 20 20 20 11 | .4f... | .|
|000020a0| 33 64 20 11 31 3d 20 11 | 34 76 20 11 31 28 11 33 |3d .1= .|4v .1(.3|
|000020b0| 78 20 20 11 31 2d 20 11 | 33 78 20 11 31 29 20 20 |x .1- .|3x .1) |
|000020c0| 2b 20 28 11 33 79 20 20 | 11 31 2d 20 11 33 79 20 |+ (.3y |.1- .3y |
|000020d0| 11 31 29 20 20 3d 20 11 | 34 76 20 11 31 5b 36 20 |.1) = .|4v .1[6 |
|000020e0| 2d 20 28 2d 32 29 5d 20 | 20 2b 20 28 31 20 2d 20 |- (-2)] | + (1 - |
|000020f0| 33 29 20 20 3d 20 11 34 | 76 20 11 31 36 38 2e 0d |3) = .4|v .168..|
|00002100| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00002110| 20 20 11 32 32 20 20 20 | 20 31 20 20 20 20 20 20 | .22 | 1 |
|00002120| 20 32 20 20 20 20 31 20 | 20 20 20 20 20 20 20 20 | 2 1 | |
|00002130| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002140| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002150| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002160| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 31 2e 00 | | .1..|
|00002170| 0c 0d 0a 00 0d 0b 00 63 | 29 20 54 68 65 20 6d 69 |.......c|) The mi|
|00002180| 64 70 6f 69 6e 74 20 6f | 66 20 74 68 65 20 6c 69 |dpoint o|f the li|
|00002190| 6e 65 20 73 65 67 6d 65 | 6e 74 20 6a 6f 69 6e 69 |ne segme|nt joini|
|000021a0| 6e 67 20 74 68 65 20 74 | 77 6f 20 70 6f 69 6e 74 |ng the t|wo point|
|000021b0| 73 20 69 73 20 67 69 76 | 65 6e 20 62 79 0d 0a 00 |s is giv|en by...|
|000021c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 34 28 20 | | .4( |
|000021d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 29 | | )|
|000021e0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 21 |... | !|
|000021f0| 11 33 78 20 20 11 31 2b | 20 11 33 78 20 20 20 79 |.3x .1+| .3x y|
|00002200| 20 20 11 31 2b 20 11 33 | 79 20 11 34 21 20 20 20 | .1+ .3|y .4! |
|00002210| 28 20 20 20 20 20 20 20 | 20 20 20 20 20 20 29 0d |( | ).|
|00002220| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 21 20 |.. | ! |
|00002230| 11 32 31 20 20 20 20 32 | 20 20 20 31 20 20 20 20 |.21 2| 1 |
|00002240| 32 11 34 21 20 20 20 21 | 11 31 2d 32 20 2b 20 36 |2.4! !|.1-2 + 6|
|00002250| 20 20 33 20 2b 20 31 11 | 34 21 0d 0b 00 20 20 20 | 3 + 1.|4!... |
|00002260| 20 20 20 20 20 20 20 20 | 20 21 32 32 32 32 32 32 | | !222222|
|00002270| 32 11 31 2c 20 11 34 32 | 32 32 32 32 32 32 21 20 |2.1, .42|222222! |
|00002280| 11 31 3d 20 11 34 21 32 | 32 32 32 32 32 11 31 2c |.1= .4!2|22222.1,|
|00002290| 20 11 34 32 32 32 32 32 | 21 20 11 31 3d 20 28 32 | .422222|! .1= (2|
|000022a0| 2c 20 32 29 2e 0d 0b 00 | 20 20 20 20 20 20 20 20 |, 2)....| |
|000022b0| 20 20 20 20 11 34 21 20 | 20 20 11 31 32 20 20 20 | .4! | .12 |
|000022c0| 20 20 20 20 20 32 20 20 | 20 11 34 21 20 20 20 21 | 2 | .4! !|
|000022d0| 20 20 20 11 31 32 20 20 | 20 20 20 20 32 20 20 11 | .12 | 2 .|
|000022e0| 34 21 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |4!... | |
|000022f0| 20 39 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 9 | |
|00002300| 20 20 30 20 20 20 39 20 | 20 20 20 20 20 20 20 20 | 0 9 | |
|00002310| 20 20 20 20 30 20 20 20 | 20 20 20 20 20 20 20 20 | 0 | |
|00002320| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002330| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 31 2e | | .1.|
|00002350| 0d 0a 00 3d 00 00 00 fb | 01 00 00 4d 2d 00 00 10 |...=....|...M-...|
|00002360| 00 00 00 00 00 00 00 65 | 30 2d 37 00 65 02 00 00 |.......e|0-7.e...|
|00002370| db 01 00 00 4d 2d 00 00 | 38 02 00 00 00 00 00 00 |....M-..|8.......|
|00002380| 65 30 2d 37 2d 31 00 6d | 04 00 00 26 03 00 00 4d |e0-7-1.m|...&...M|
|00002390| 2d 00 00 40 04 00 00 00 | 00 00 00 65 30 2d 37 2d |-..@....|...e0-7-|
|000023a0| 32 00 c0 07 00 00 ce 07 | 00 00 4d 2d 00 00 93 07 |2.......|..M-....|
|000023b0| 00 00 00 00 00 00 65 30 | 2d 37 2d 33 00 bb 0f 00 |......e0|-7-3....|
|000023c0| 00 cf 04 00 00 4d 2d 00 | 00 8e 0f 00 00 00 00 00 |.....M-.|........|
|000023d0| 00 65 30 2d 37 2d 34 00 | b7 14 00 00 40 05 00 00 |.e0-7-4.|....@...|
|000023e0| 4d 2d 00 00 8a 14 00 00 | 00 00 00 00 65 30 2d 37 |M-......|....e0-7|
|000023f0| 2d 35 00 24 1a 00 00 61 | 03 00 00 4d 2d 00 00 f7 |-5.$...a|...M-...|
|00002400| 19 00 00 00 00 00 00 65 | 30 2d 37 2d 36 00 b2 1d |.......e|0-7-6...|
|00002410| 00 00 a1 05 00 00 4d 2d | 00 00 85 1d 00 00 00 00 |......M-|........|
|00002420| 00 00 69 30 2d 37 2d 31 | 00 |..i0-7-1|. |
+--------+-------------------------+-------------------------+--------+--------+